
TECHNICAL REPORT TR-10-03, UC DAVIS, OCTOBER, 2010. 1

Learning in A Changing World: Non-Bayesian Restless

Multi-Armed Bandit

Haoyang Liu, Keqin Liu, Qing Zhao

University of California, Davis, CA 95616

{liu, kqliu, qzhao}@ucdavis.edu

Abstract

We consider the restless multi-armed bandit (RMAB) problem with unknown dynamics. In this

problem, at each time, a player choosesK out of N (N > K) arms to play. The state of each arm

determines the reward when the arm is played and transits according to Markovian rules no matter the

arm is engaged or passive. The Markovian dynamics of the arms are unknown to the player. The objective

is to maximize the long-term reward by designing an optimal arm selection policy. The performance

of a policy is measured by regret, defined as the reward loss with respect to the case where the player

knows whichK arms are the most rewarding and always plays theseK best arms. We construct a

policy, referred to as Restless Upper Confidence Bound (RUCB), that achieves a regret with logarithmic

order of time when an arbitrary nontrivial bound on certain system parameters is known. When no

knowledge about the system is available, we extend the RUCB policy to achieve a regret arbitrarily

close to the logarithmic order. In both cases, the system achieves the maximum mean reward offered by

the K best arms. Potential applications of these results include cognitive radio networks, opportunistic

communications in unknown fading environments, and financial investment.

Index Terms

Restless multi-armed bandit, non-Bayesian formulation, regret, logarithmic order

I. INTRODUCTION

The Restless Multi-Armed Bandit (RMAB) problem is a generalization of the classic Multi-

Armed Bandit (MAB) problem. In the classic MAB, there areN independent arms and a single
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player. At each time, the player chooses one arm to play and receives certain amount of reward.

The reward (i.e., the state) of each arm evolves as an i.i.d. process over successive plays. The

reward distribution of each arm is unknown to the player. The objective is to maximize the long-

term reward by designing an optimal arm selection policy. This problem involves the well-known

dilemma between exploitation and exploration. For exploitation, the player tends to select the

arm suggested by past reward observations as the best. For exploration, the player selects an arm

to learn its reward statistics. Under the non-Bayesian formulation, the performance measure of

an arm selection policy is given by regret, defined as the reward loss compared with the optimal

performance in the ideal scenario of a known reward model [1]. Note that in the ideal scenario,

the player will always play the arm with the highest mean reward. The essence of the problem

is to identify the best arm without engaging other inferior arms too often.

In 1985, Lai and Robbins showed that the minimum regret grows with time in a logarithmic

order [1]. A policy was further constructed to achieve the minimum regret (both the logarithmic

order and the best leading constant) [1]. In 1987, Anantharamet al. extended Lai and Robbins’s

results to accommodate multiple simultaneous plays [2] and Markovian reward model where the

reward of each arm evolves as an unknown Markov process over successive plays and remains

frozen when the arm is not played (the so-called rested Markovian reward model) [3]. For both

extensions, the minimum regret growth rate has been shown to be logarithmic [2], [3]. There

are also several simpler index policies that achieve logarithmic regret for the classic MAB under

an i.i.d. reward model [4], [5]. In particular, the index policy—referred to as Upper Confidence

Bound 1 (UCB1)—proposed in [5] achieves the logarithmic regret with a uniform bound on the

leading constant over time. In [6], UCB1 was extended to the rested Markovian reward model

adopted in [3].

A. Restless Multi-Armed Bandit with Unknown Dynamics

Different from the classic MAB, in an RMAB, the state of each arm can change (according

to an unknown Markovian rule) even when the arm isnot played. The unknown state transition

matrix when the arm is played can be different from that when it is not played. We consider

the general case whereK (K < N) arms are simultaneously played at each time. Even with a

known model, the RMAB problem has been shown to be P-SPACE hard in general [7].

In this paper, we address the RMAB problem with unknown Markovian dynamics. Similar to
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the classic MAB, we measure the performance of a policy by regret, defined as the reward loss

compared to the case when the player knows whichK arms are most rewarding and always

plays theK best arms. We show that for RMAB, logarithmic regret can also be achieved as in

the classic MAB. Specifically, we construct a policy that achieves logarithmic regret when an

arbitrary nontrivial bound on certain system parameters is known. When no knowledge about

the system is available, we show that a variation of the policy achieves a regret arbitrarily close

to logarithmic order,i.e., the regret has orderf(t) log(t) for any increasing functionf(t) with

f(t) → ∞ as timet → ∞. In both cases, the proposed policy achieves the maximum mean

reward offered by theK best arms.

Referred to as the Restless Upper Confidence Bound (RUCB), the proposed policy borrows the

basic index form of the UCB-1 policy developed in [5] for the classic MAB under i.i.d. reward

models. To handle the restless nature of the problem, the basic structure of the proposed RUCB

policy is fundamentally different from that of UCB-1. Specifically, the basic structure of RUCB

consists of interleaving exploitation and exploration epochs with carefully controlled lengths

to bound the frequency of arm switching and balance the tradeoff between exploitation and

exploration. Another novelty of this paper is a general technique in choosing policy parameters

whose value may have to depend on the range of certain system parameters. We show that by

letting these policy parameters grow with time (rather than fixeda priori), one can get around

with the dependency of the policy parameters on system parameters and achieve a regret order

arbitrarily close to logarithmic without any knowledge about the system.

We point out that the definition of regret adopted in this paper, while similar to that used for

the classic MAB, is a weaker version of its counterpart in the classic MAB. In the classic MAB

with either i.i.d. or rested Markovian reward, the optimal policy under known model is to stay

with the best arm in terms of the reward mean. For RMAB, however, the optimal policy under

known model is no longer given by staying with the arm with the highest mean reward. Defining

the regret in terms of this optimal policy would require that a general RMAB with known model

be solved and optimal performance analyzed before the regret under unknown model can be

approached. Unfortunately, RMAB under known model itself is intractable in general [7]. In

this paper, we adopt a weaker definition of regret where the performance is compared with a

“partially-informed” genie who knows only whichk arms have the highest mean reward instead

of the complete system dynamics. This definition of regret leads to a tractable problem, but at
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the same time, weaker results. Whether stronger results for a general RMAB under unknown

model can be obtained is still open for exploration (see more discussions in Sec. I-C on related

work).

B. Applications

The restless multi-armed bandit problem has a broad range of applications. For example, in a

cognitive radio network, a secondary user searches among several channels for idle slots that are

temporarily unused by primary users. The state of each channel (busy or idle) can be modeled

as a two-state Markov chain. At each time, a secondary user chooses one channel to sense and

subsequently transmit if the channel is found in the idle state. The objective of the secondary

user is to maximize the long-term throughput by designing an optimal channel selection policy

without knowing the traffic dynamics of the primary users.

Consider opportunistic transmission over multiple wireless channels with unknown Markovian

fading. In each slot, a user senses the fading realization of a selected channel and chooses its

transmission power or date rate accordingly. The reward can model energy efficiency (for fixed-

rate transmission) or throughput. The objective is to design the optimal channel selection policies

under unknown fading dynamics.

Another potential application is financial investment, where a Venture Capital (VC) selects

one company to invest at each year. The state (e.g., annual profit) of each company evolves as a

Markov chain with the transition matrix depending on whether the company is invested or not.

The objective of the VC is to maximize the long-run profit by designing the optimal investment

strategy without knowing the market dynamicsa priori.

The proposed policy for RMAB also provides a basic building block for constructing decen-

tralized policies for MAB with multiple distributed players under a Markovian reward model [8]

(Decentralized MAB was first formulated and solved under an i.i.d. reward model in [9]). In the

decentralized MAB with Markovian reward, multiple distributed players select arms to play and

collide when they select the same arm. Arms are rested,i.e., they do not change states when they

are not played. However, from each player’s point of view, each arm is restless since its state

can be changed by other players. Applying the RUCB policy proposed here to the decentralized

rested multi-armed bandit problem leads to the optimal logarithmic order of the regret [8].
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C. Related Work

This paper is among the few first attempts on RMAB under uknown models. There are two

parallel independent investigations reported in [10] and [11]. In [10], Tekin and Liu adopted the

same definition of regret as used in this paper and proposed a policy that achieves logarithmic

(weak) regret when certain knowledge about the system parameters is available [10]. The policy

proposed in [10] also uses the index form of UCB-1 given in [5], but the structure is different

from RUCB proposed in this paper. In [11], a stronger definition of regret is adopted, where

regret is defined as reward loss with respect to the optimal performance in the ideal scenario of

known reward model. However, the problem can only be solved for a special class of RMAB.

Specifically, when arms are governed by stochastically identical two-state Markov chains, a

policy was constructed in [11] to achieve a regret with an order arbitrarily close to logarithmic.

The RMAB with known reward model has been extensively studied in the literature. In [12],

Whittle proposed a heuristic index policy that generalizes Gittins optimal index policy for

the classic MAB with known reward model [13]. Weber showed that Whittle index policy is

asymptotically optimal (as the number of arms goes to infinity) under certain conditions [14].

In the finite regime, the optimality of Whittle index policy has been shown for certain special

families of RMAB (see, for example, [15]).

II. PROBLEM FORMULATION

In the RMAB problem, we have one player andN independent arms. At each time, the player

can chooseK (K < N) arms to play (we focus onK = 1 for the simplicity of presentation).

Each arm, when played (activated), offers certain amount of reward that models the current state

of the arm. Letsj(t) denote the state of armj at timet. No matter an arm is played or not, the

state of the arm changes according to a Markovian rule. In general, the transition matrices in

the active mode and the passive mode are not necessarily the same. The player does not know

the transition matrices of the arms. The objective is to choose one arm to play at each time in

order to maximize the expected total reward collected in the long run.

Let Sj denote the state space of armj. Each arm is assumed to have a finite state space.

Different arms can have different state spaces. LetPj denote the active transition matrix of arm

j and Qj the passive transition matrix. All transition matrices are assumed to be irreducible,

aperiodic, and reversible. Let~πj = {πj
s}s∈Sj

denote the stationary distribution of armj in the
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active mode (i.e., underPj), whereπi
s is the stationary probability (underPj) that armj is in

states. The stationary mean rewardµj is given byµj =
∑

s∈Sj
sπj

s . Let σ be a permutation of

{1, · · · , N} such that

µσ(1) ≥ µσ(2) ≥ µσ(3) ≥ · · · ≥ µσ(N).

A policy Φ is a rule that specifies the arm to play based on the observation history. Lettj(n)

denote the time index of thenth play on armj, andTj(t) the total number of plays on armj

by time t. Notice that bothtj(n) andTj(t) are random variables with distributions determined

by the policyΦ. The total reward by timet is given by

R(t) =
N

∑

j=1

Tj(t)
∑

n=1

sj(tj(n)). (1)

As mentioned in Sec. I, the regretrΦ(t) achieved by policyΦ is defined as the reward loss

with respect to the case where the player knows which arm has the highest mean reward and

always plays this best arm. We thus have

rΦ(t) = tµσ(1) − EΦR(t), (2)

whereEΦ denotes the expectation with respect to the random process induced by policyΦ. The

objective is to minimize the growth rate of the regret.

III. T HE RUCB POLICY

The proposed policy RUCB is based on an epoch structure. We divide the time into disjoint

epochs. There are two types of epochs: exploitation epochs and exploration epochs (see an

illustration in Fig. 1). In the exploitation epochs, the player calculates indexes of all arms and

play the arm with the highest index, which is believed to be the best arm. In the exploration

epochs, the player obtains information of all arms by playing them equally many times. The

purpose of the exploration epochs is to make decisions in the exploitation epochs sufficiently

accurate. As shown in Fig. 1, in thenth exploration epoch, the player plays every arm4n−1

times. At the beginning of thenth exploitation epoch the player calculates index for every arm

(see (4) in Fig. 2) and selects the arm with the highest index (denoted as arma∗). The player

keeps playing arma∗ till the end of this epoch that has length2 × 4n−1. How the two types

of epochs interleave is detailed in Step2 in Fig. 2. Specifically, whenever sufficiently many
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(D ln t, see (3)) observations have been obtained from every arm in the exploration epochs,

the player is ready to proceed with a new exploitation epoch. Otherwise, another exploration

epoch is required to gain more information about each arm. It is also implied in (3) that only

logarithmically many plays are spent in the exploration epochs, which is one of the key reasons

for the logarithmic regret of RUCB. This also implies that the exploration epochs are much less

frequent than the exploitation epochs. Though the exploration epochs can be understood as the

“information gathering” phase, and the exploitation epochs as the “information utilization” phase,

observations obtained in the exploitation epochs are also used in learning the arm dynamics. This

can be seen in Step3 in Fig. 2. In calculating the indexes using (4), observations from both the

exploration and exploitation epochs are used. This is different from the policy in [10], which

only uses part of the past observations in calculating indexes. A complete description of the

proposed policy is given in Fig. 2.

Exploitation epochsExploration epochs

Slot

SlotSlot

Epoch

arm

arm

armarm

armarmarmarmarmarm

The general structure of RUCB

1

1

1

111

2

2

2

2

3 4 5 6 7 8

2n−1 2 × 4n−1

2 × 4n−1

(N − 1) × 4n−1 + 1 N × 4n−1

NN

Structure of thenth exploration epoch

Structure of thenth exploitation epoch

Compute the indexes and identify the arm with the highest index (denote it as arma∗)

a∗ a∗a∗ · · ·· · ·· · ·· · ·

· · ·· · ·· · · · · ·

Fig. 1. Epoch structures of RUCB
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RUCB

Time is divided into epochs. There are two types of epoch, exploration epoch and exploitation epoch. At

the beginning of thenth exploitation epoch, we choose one arm to play for2 × 4n−1 many times. In the

nth exploration epoch, we play every arm4n−1 many times. LetnO(t) denote the number of exploration

epochs played by timet andnI(t) the number of exploitation epochs played by timet.

1. At t = 1, we start the first exploration epoch, in which every arm is played once. We setnO(N+1) =

1, nI(N + 1) = 0. Then go to Step2.

2. Let X1(t) = (4nO(t) − 1)/3 be the time spent on each arm in exploration epochs by timet. Choose

D according to (5)(6). If

X1(t) > D ln t, (3)

go to Step3 (start an exploitation epoch). Otherwise, go to Step4 (start an exploration epoch).

3. Calculate indexesdi,t for all arms using the formula below:

di,t = s̄i(t) +

√

L ln t

Ti(t)
, (4)

wheret is the current time,̄si(t) is the sample mean from armi by time t, L is chosen according

to (5), andTi(t) is the number of times we have played armi by time t. Then choose the arm with

the highest index and play it for2 × 4(nI−1) slots. IncreasenI by one. Go to step2.

4. Play each arm for4(nO−1) slots. IncreasenO by one. Go to Step2.

Fig. 2. RUCB policy

IV. THE LOGARITHMIC REGRET OFRUCB

In this section, we show that the regret achieved by the RUCB policy has a logarithmic order.

This is given in the following theorem.

Theorem 1: Assume all arms are modeled as finite state, irreducible, aperiodic, and reversible

Markov chains. All the states (rewards) are positive. Letπmin = mins∈Si,1≤i≤N πi
s, ǫmax =

max1≤i≤N ǫi, ǫmin = min1≤i≤N ǫi, smax = maxs∈Si,1≤i≤N s, smin = mins∈Si,1≤i≤N s, and|S|max =

max1≤i≤N |Si| whereǫi is the second largest eigenvalue ofPi. Let M < N denote the number

of optimal arms. Set the policy parametersL andD to satisfy the following conditions:

L ≥ 1

ǫmin
(4

20s2
max|S|2max

(3 − 2
√

2)
+ 10s2

max), (5)
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D ≥ 4L

(µ∗ − µσ(M+1))2
. (6)

The regret of RUCB at the end of any epoch can be upper bounded by

rΦ(t) ≤ (⌈log4(
3

2
(t − M) + 1)⌉) max

i
Ai

+N(⌊log4(3D ln t + 1)⌋ + 1) max
i

Ai

+
∑

i

(µ∗ − µi)(⌈log4(
3

2
(t − M) + 1)⌉3 |Si| + |S∗|

πmin
(1 +

ǫmax

√
L

10smin
)

+
∑

i

(µ∗ − µi)
1

3
[4(3D ln t + 1) − 1]), (7)

whereAi = (mins∈Si
πi

s)
−1

∑

s∈Si
s.

Proof: See Appendix A for details.

In RUCB, to ensure logarithmic regret order, the policy parametersL and D need to be

chosen appropriately. This requires an arbitrary (nontrivial) bound ons2
max, |S|max, ǫmin, and

µ∗−µσ(M+1). In the case where these bounds are unavailable,D andL can be chosen to increase

with time to achieve a regret order arbitrarily close to logarithmic order. This is formally stated

in the following theorem.

Theorem 2: Assume all arms are modeled as finite state, irreducible, aperiodic, and reversible

Markov chains. For any increasing sequencef(t) (f(t) → ∞ as t → ∞), if L(t) andD(t) are

chosen such thatL(t) → ∞ as t → ∞ , f(t)
D(t)

→ ∞ as t → ∞, and D(t)
L(t)

→ ∞ as t → ∞, then

we have

rΦ(t) ∼ o(f(t) log(t)). (8)

Proof: See Appendix B for details.

V. CONCLUSION

In this paper, we considered the non-Bayesian restless multi-armed bandit problem. We adopted

the definition of regret from the classic MAB and developed a policy that achieves logarithmic

regret when an arbitrary (nontrivial) bound on certain system parameters is known. When no

knowledge about the system is available, we extend the RUCB policy to achieve a regret with

an order arbitrarily close to logarithmic.
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APPENDIX A. PROOF OFTHEOREM 1

We first rewrite the definition of regret as

rΦ(t) = tµ∗ − EΦR(t) =

N
∑

i=1

[µiE[Ti(t)] − E[

Ti(t)
∑

n=1

si(ti(n))]] +

N
∑

i=1

(µ∗ − µi)E[Ti(t)]. (9)

To show that the regret has a logarithmic order, it is sufficient to show that both terms in (9)

have logarithmic orders. The first term in (9) can be understood as the regret caused by arm

switching. The second term can be understood as the regret caused by engaging a bad arm. First,

we bound the regret caused by arm switching based on the following lemma.

Lemma 1 [3]: Consider an irreducible, aperiodic Markov chain with state spaceS, matrix of

transition probabilitiesP , an initial distribution~q which is positive in all states, and stationary

distribution~π (πs is the stationary probability of states). The state (reward) at timet is denoted

by s(t). Let µ denote the mean reward. If we play the chain for an arbitrary timeT , then there

exists a valueAP ≤ (mins∈S πs)
−1

∑

s∈S s such thatE[
∑T

t=1 s(t) − µT ] ≤ AP .

Lemma1 shows that if the player continues to play one arm for timeT , the difference between

the expected reward andTµ can be bounded by a constant that is independent ofT . This constant

is an upper bound for the regret caused by each arm switching. If there are only logarithmically

many arm switchings as times goes, the regret caused by arm switching has a logarithmic order.

An upper bound on the number of arm switchings is shown below. It is developed by bounding

the numbers of the exploration epochs and the exploitation epochs respectively.

For the exploration epochs, by timet, if the player has began to play the(n+1)th exploration

epoch, we have

1

3
(4n − 1) < D ln t, (10)

where 1
3
(4n − 1) is the time spent on each arm in the firstn exploration epochs.

Consequently the number of the exploration epochs can be bounded by

nO(t) ≤ ⌊log4(3D ln t + 1)⌋ + 1. (11)

By time t, at most(t − N) time slots have been spent on the exploitation epochs. Thus

nI(t) ≤ ⌈log4(
3

2
(t − N) + 1)⌉. (12)
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Hence an logarithmic upper bound of the first term in (9) is

N
∑

i=1

[µiE[Ti(t)] − E[

Ti(t)
∑

n=1

si(ti(n))]] ≤ (⌈log4(
3

2
(t − N) + 1)⌉

+N(⌊log4(3D ln t + 1)⌋ + 1)) max
i

Ai, (13)

whereAi = (mins∈Si
πi

s)
−1

∑

s∈Si
s.

Next we show that the second term of (9) has a logarithmic order. The approach here is to

show that for every bad armi, E[Ti(t)] has a logarithmic order. LetTi,O(t) denote the time spent

on armi in the exploration epochs by timet. Let Ti,I(t) denote the time spent on armi in the

exploitation epochs by timet. So we have

Ti(t) = Ti,O(t) + Ti,I(t), (14)

We will show that bothE[Ti,O(t)] andE[Ti,I(t)] have logarithmic orders.

The logarithmic order ofE[Ti,O(t)] follows directly from (11),i.e.,

Ti,O(t) ≤ 1

3
[4(3D ln t + 1) − 1]. (15)

The logarithmic order ofE[Ti,I(t)] is established by boundingPr[i, n], the probability that

arm i is played in thenth exploitation epoch.

Recall that if armi is selected in thenth exploitation epoch, it will be played for2 × 4(n−1)

times. From the upper bound on the number of the exploitation epochs given in (12), we thus

have

E[Ti,I(t)] ≤
⌈log4(

3
2
(t−M)+1)⌉
∑

n=1

2 × 4n−1 Pr[i, n] (16)

≤
⌈log4(

3
2
(t−M)+1)⌉
∑

n=1

3tn Pr[i, n], (17)

wheretn denote the starting time of thenth exploitation epoch and (17) follows from the fact

that tn ≥ 2
3
4n−1. Notice that (17) has only logarithmically many terms, if each term can be

bounded by a fixed constant,i.e., if Pr[i, n] has an order oft−1
n , then the sum has a logarithmic

order.

Let Ct,w =
√

(L ln t/w) denote the second part of the RUCB index. If armi is played in the

nth exploitation epoch, then

∃w < tn, wi < tn, such that s̄∗(tn) + Ctn,w ≤ s̄i(tn) + Ctn,wi
. (18)
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We thus have

Pr[i, n] ≤
tn−1
∑

w=1

tn−1
∑

wi=D ln tn

Pr[s̄∗(tn) + Ctn,w ≤ s̄i(tn) + Ctn,wi
] (19)

≤
tn−1
∑

w=1

tn−1
∑

wi=D ln tn

(Pr[s̄∗(tn) ≤ µ∗ − Ctn,w] + Pr[s̄i(tn) ≥ µi + Ctn,wi
]

+ Pr[µ∗ < µi + 2Ctn,wi
]) (20)

≤
tn−1
∑

w=1

tn−1
∑

wi=D ln tn

(Pr[s̄∗(tn) ≤ µ∗ − Ctn,w] + Pr[s̄i(tn) ≥ µi + Ctn,wi
]), (21)

where (21) follows from the fact thatwi ≥ D ln tn .

Next we boundPr[s̄i(tn) ≥ µi + Ctn,wi
] and Pr[s̄∗(tn) ≤ µ∗ − Ctn,w]. The events̄i(tn) ≥

µi + Ctn,wi
is equivalent to

wis̄i(tn) ≥ wiµi +
√

Lwi ln tn. (22)

The inequality (22) is the event that the sample mean from multiple epochs for armi is too

high. This event implies that the sample mean from at least one epoch is significantly higher

than the true mean. Notice that the tolerant deviation in (22) is of the form
√

Lwi ln tn. It is

convenient if the tolerant deviation for each epoch is of the formC
√

Lw ln tn, wherew is the

number of plays done on one arm in one epoch andC is a constant independent ofw. In this

way, the tolerant deviations for the sample mean in each epoch and in all the epochs are of

similar forms. The possible values for the number of plays in the exploitation epochs are2×4n.

The possible values of the numbers of plays done on an arm in the exploration epochs are4n.

Consequently it can be assumed that the player has spent timewi on armi by playing the epochs

with lengths of2n1−1, 2n2−1, · · · , 2nK−1, with eachnj distinct. Thuswi =
∑K

j=1 2nj−1 and

√
wi =

K
∑

j=1

[

√

√

√

√

j
∑

k=1

2nk−1 −

√

√

√

√

j−1
∑

k=1

2nk−1

]

=

K
∑

j=1

[

√

√

√

√

j−1
∑

k=1

2nk−1 + 2nj−1 −

√

√

√

√

j−1
∑

k=1

2nk−1

]

≥
K

∑

j=1

[

√

2nj−1 + 2nj−1 −
√

2nj−1

]

=

K
∑

j=1

(
√

2 − 1)
√

2nj−1. (23)
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The tolerant deviation for an continuous period of play with length2nj−1 is (
√

2−1)
√

L ln tn2nj−1.

Let Ri(w) denote the reward gained from armi in a period with lengthw. An upper bound on

Pr[wis̄i(tn) ≥ wiµi +
√

L ln tnwi] is derived below

Pr [wis̄i(tn) ≥ wiµi +
√

L ln tnwi]

≤
K

∑

j=1

Pr[Ri(2
nj−1) ≥ µi · 2nj−1 +

√

L ln tn

[

√

√

√

√

j
∑

k=1

2nk−1 −

√

√

√

√

j−1
∑

k=1

2nk−1

]

]

≤
K

∑

j=1

Pr[Ri(2
nj−1) ≥ µi · 2nj−1 + (

√
2 − 1)

√

2nj−1L ln tn]. (24)

The probabilityPr[Ri(2
nj−1) ≥ µi · 2nj−1 + (

√
2 − 1)

√
2nj−1L ln tn] is for the event that the

sum of reward during a period of time of length2nj−1 from armi is significantly deviated from

µi2
nj−1. It can be written in terms of the numbers of occurrences of states. Specifically, let

Oi
s(w) denote the number of occurrences of states from arm i in a period with lengthw, we

have

Pr [Ri(2
nj−1) ≥ µi · 2nj−1 + (

√
2 − 1)

√

2nj−1L ln tn]

= Pr[
∑

s∈Si

(−sOi
s(2

nj−1) + s2nj−1πi
s) ≤ −(

√
2 − 1)

√

2nj−1L ln tn]. (25)

The above equality leads to

Ri(2
nj−1) ≥ µi · 2nj−1 + (

√
2 − 1)

√

2nj−1L ln tn implies that

−Os
i (2

nj−1) + 2nj−1πi
s ≤ −(

√
2 − 1)

√

2nj−1L ln tn/(s|Si|) for somes ∈ Si. (26)

Thus the event that the sample mean is significantly deviated from the true mean implies that

at least one state occurs much often than predicted by its stationary probability.

Lemma2 below is used to bound the probability that a state occurs much often than predicted

by its stationary probability.

Lemma 2 (Chernoff Bound, Theorem2.1 in [16]): Consider a finite state, irreducible, aperiodic

and reversible Markov chain with state spaceS, matrix of transition probabilitiesP , and an initial

distributionq. Let Nq = |( qx

πx
), x ∈ S|2. Let ǫ = 1−λ2, whereλ2 is the second largest eigenvalue

of the matrixP . ǫ will be referred to as the eigenvalue gap. LetA ⊂ S. Let TA(t) be the number

of times that states in the setA are visited up to timet. Then for anyγ ≥ 0, we have

Pr(TA(t) − tπA ≥ γ) ≤ (1 +
γǫ

10t
)Nqe

−γ2ǫ/20t. (27)
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Using Lemma2, we have

Pr[Ri(2
nj−1) ≥ µi · 2nj−1 + (

√
2 − 1)

√

2nj−1L ln tn] (28)

≤
∑

s∈Si

P [−Os
i (2

nj−1) + 2nj−1πi
s ≤ −(

√
2 − 1)

√

2nj−1L ln tn/(s|Si|)] (29)

=
∑

s∈Si

P [Os
i (2

nj−1) − 2nj−1πi
s ≥ (

√
2 − 1)

√

2nj−1L ln tn/(s|Si|)] (30)

≤
∑

s∈Si

(1 +
ǫi

√

L ln tn/2nj−1

10s
)Nqit−(3−2

√
2)(Lǫi/(20(s)2|Si|2)))

n (31)

≤ |Si|
πmin

(1 +
ǫmax

√
L

10smin

)t
−(3−2

√
2)(

Lǫmin−10s2max
20s2max |S|2max

)

n . (32)

SinceL ≥ 1
ǫmin

(420s2
max|S|2max

(3−2
√

2)
+ 10s2

max) andK < tn in (23), we have

Pr[s̄i(tn) ≥ µi + Ctn,wi
] ≤ |Si|

πmin
(1 +

ǫmax

√
L

10smin
)t−3

n . (33)

Similarly, it can be shown that

Pr[s̄∗(tn) ≤ µ∗ − Ctn,w] ≤ |S∗|
πmin

(1 +
ǫmax

√
L

10smin
)t−3

n . (34)

So

E[T 2
i (t)] ≤ ⌈log4(

3

2
(t − M) + 1)⌉3 |Si| + |S∗|

πmin
(1 +

ǫmax

√
L

10smin
). (35)

Combining (9) (13) (14) (15) (35), we can get the upper bound of regret:

rΦ(t) ≤ (⌈log4(
3

2
(t − M) + 1)⌉) max

i
Ai

+N(⌊log4(3D ln t + 1)⌋ + 1) max
i

Ai

+
∑

i

(µ∗ − µi)(⌈log4(
3

2
(t − M) + 1)⌉3 |Si| + |S∗|

πmin

(1 +
ǫmax

√
L

10smin

)

+
∑

i

(µ∗ − µi)
1

3
[4(3D ln t + 1) − 1]). (36)

We point out that the same Chernoff bound given in Lemma2 is also used in [6] to handle the

rested Markovian reward MAB problem. Note that the Cheroff bound in [16] requires that all the

observations used in calculating the sample means (s̄i and s̄∗ in (21)) are from a continuously

evolving Markov process. This condition is naturally satisfied in the rested MAB problem.

However, for the restless MAB problem considered here, the sample means are calculated using
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observations from multiple epochs, which are noncontiguous segments of the Markovian sample

path. As detailed in the above proof, the desired bound on the probabilities of the events in (21)

is ensured by the carefully chosen (growing) lengths of the exploration and exploitation epochs.

APPENDIX B. PROOF OFTHEOREM 2

The choice ofL(t) and D(t) implies thatD(t) → ∞ as t → ∞. By the same reasoning

in the proof of Theorem1, the regret has three parts: The regret caused by arm switching, the

regret caused by playing bad arms in the exploration epochs, and the regret caused by playing

bad arms in the exploitation epochs. It will be shown that each part part of the regret is on a

lower order thanf(t) log(t).

The number of arm switchings is upper bounded byN log2(t/N + 1). So the regret caused

by arm switching is upper bounded by

N log2(t/N + 1) max
i

Ai, (37)

whereAi = (mins∈Si
πi

s)
−1

∑

s∈Si
s. Sincef(t) → ∞ as t → ∞, we have

lim
t→∞

N log2(t/N + 1) maxi Ai

f(t) log(t)
= 0. (38)

Thus the regret caused by arm switching is on a lower order thanf(t) log(t).

The regret caused by playing bad arms in the exploration epochs is bounded by

∑

i

(µ∗ − µi)
N

3
[4(3D(t) ln t + 1) − 1]. (39)

Since f(t)
D(t)

→ ∞ as t → ∞, we have

lim
t→∞

∑

i(µ
∗ − µi)

N
3
[4(3D(t) ln t + 1) − 1]

f(t) log(t)
= 0. (40)

Thus the regret caused by playing bad arms in the exploration epochs is on a lower order than

f(t) log(t).

For the regret caused by playing bad arms in the exploitation epochs, it is shown below that

the time spent on a bad armi can be bounded by a constant independent oft.

Since D(t)
L(t)

→ ∞ as t → ∞, there exists a timet3 such that∀t ≥ t3, D(t) ≥ 4L(t)
(µσ(1)−µσ(2))2

.

There also exists a timet4 such that∀t ≥ t4, L(t) ≥ 1
ǫmin

(620s2
max|S|2max

(3−2
√

2)
+ 10s2

max). The time
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spent on playing bad arms beforet5 = max(t3, t4) is at mostt5, and the caused regret is at most

(µ∗ − µσ(N))t5. After t5, the time spent on each bad armi is upper bounded by:

3
|Si| + |S∗|

πmin
(1 +

ǫmax

√

L(t5)

10smin
). (41)

An upper bound for the corresponding regret is

∑

i

(µ∗ − µi)(3
|Si| + |S∗|

πmin
)(1 +

ǫmax

√

L(t5)

10smin
). (42)

So the regret caused by playing bad arms in the exploitation epochs is

(µ∗ − µσ(N))t5 +
∑

i

(µ∗ − µi)(3
|Si| + |S∗|

πmin
)(1 +

ǫmax

√

L(t5)

10smin
), (43)

which is a constant independent of timet. Thus the regret caused by playing bad arms in the

exploration epochs is on a lower order thanf(t) log(t).

Because each part of the regret is on a lower order thanf(t) log(t), the total regret is also on

a lower order thanf(t) log(t).

REFERENCES

[1] T. Lai and H. Robbins, “Asymptotically Efficient AdaptiveAllocation Rules,”Advances in Applied Mathematics, Vol. 6,

No. 1, pp. 4C22, 1985.

[2] V. Anantharam, P. Varaiya, J. Walrand, “Asymptotically Efficient Allocation Rules for the Multiarmed Bandit Problem

with Multiple Plays-Part I: I.I.D. Rewards,”IEEE Transaction on Automatic Control, Vol. AC-32 ,No.11 , pp. 968-976,

Nov., 1987.

[3] V. Anantharam, P. Varaiya, J. Walrand, “Asymptotically Efficient Allocation Rules for the Multiarmed Bandit Problem with

Multiple Plays-Part II: Markovian Rewards,”IEEE Transaction on Automatic Control, Vol. AC-32 ,No.11 ,pp. 977-982,

Nov., 1987.

[4] R. Agrawal, “Sample Mean Based Index Policies With O(log n) Regret for the Multi-armed Bandit Problem,”Advances

in Applied Probability, Vol. 27, pp. 1054C1078, 1995.

[5] P. Auer, N. Cesa-Bianchi, P. Fischer, “Finite-time Analysis of the Multiarmed Bandit Problem,”Machine Learning, 47,

235-256, 2002.

[6] C. Tekin, M. Liu, “Online Algorithms for the Multi-Armed Bandit Problem With Markovian Rewards,”Proc. of Allerton

Conference on Communications, Control, and Computing, Sep., 2010.

[7] C. Papadimitriou, J. Tsitsiklis, “The Complexity of Optimal Queuing Network Control,”Mathematics of Operations

Research, Vol. 24, No. 2, pp. 293-305, May 1999.

[8] H. Liu, K. Liu, Q. Zhao, “Distributed Learning in Multi-Armed Bandit with Multiple Players - Markovian Rewards,”

Technical Report, Oct. 2010. Available at http://www.ece.ucdavis.edu/∼qzhao/Report.html.

[9] K. Liu, Q. Zhao, “Distributed Learning in Multi-Armed Bandit with Multiple Players,”Transations on Signal Processing,

Vol. 58, No. 11, pp. 5667-5681, Nov. 2010.



TECHNICAL REPORT TR-10-03, UC DAVIS, OCTOBER, 2010. 17

[10] C. Tekin, M. Liu, “Online Learning in Opportunistic Spectrum Access: A Restless Bandit Approach,” Arxiv pre-print

http://arxiv.org/abs/1010.0056, Oct. 2010.

[11] W. Dai, Y. Gai, B. Krishnamachari, Q. Zhao “The Non-Bayesian Restless Multi-armed Bandit: A Case Of Near-Logarithmic

Regret,” submitted toICASSP, Oct., 2010.

[12] P. Whittle, “Restless Bandits: Activity Allocation in a Changing World,”Journal of Applied Probability, Vol. 25, pp. 287-

298, 1988.

[13] J. Gittins, “Bandit processes and dynamic allocation indicies (with discussion),”J. R. Statist. Soc., B, 41, pp. 148-177,

1979

[14] R. Weber and G. Weiss, “On an Index Policy for Restless Bandits,”Journal of Applied Probability, Vol. 27, No. 3,

pp. 637-648, Sep., 1990.

[15] K. Liu and Q. Zhao “Indexability of Restless Bandit Problems and Optimality of Whittle Index for Dynamic Multichannel

Access,”IEEE Transactions on Information Theory, Vol. 55, No. 11, pp. 5547-5567, Nov. 2010.

[16] D. Gillman, “A Chernoff Bound for Random Walks on Expander Graphs,”Proc. 34th IEEE Symp. on Foundatioins of

Computer Science (FOCS93),vol. SIAM J. Comp.,Vol. 27, No. 4, 1998.


